Concentration of Measure and Mixing for Markov Chains
نویسنده
چکیده
We consider Markovian models on graphs with local dynamics. We show that, under suitable conditions, such Markov chains exhibit both rapid convergence to equilibrium and strong concentration of measure in the stationary distribution. We illustrate our results with applications to some known chains from computer science and statistical mechanics.
منابع مشابه
Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملMeasure Concentration of Strongly Mixing Processes with Applications
The concentration of measure phenomenon was first discovered in the 1930’s by Paul Lévy and has been investigated since then, with increasing intensity in recent decades. The probabilitytheoretic results have been gradually percolating throughout the mathematical community, finding applications in Banach space geometry, analysis of algorithms, statistics and machine learning. There are several ...
متن کاملCharacterization of cutoff for reversible Markov chains
A sequence of Markov chains is said to exhibit cutoff if the convergence to stationarity in total variation distance is abrupt. We prove a necessary and sufficient condition for cutoff in reversible lazy chains in terms of concentration of hitting time of certain sets of large stationary measure. (Previous works of Aldous, Oliviera, Sousi and the speaker established a less precise connection be...
متن کاملConductance and Rapidly Mixing Markov Chains
Conductance is a measure of a Markov chain that quantifies its tendency to circulate around its states. A Markov chain with low conductance will tend to get ‘stuck’ in a subset of its states whereas one with high conductance will jump around its state space more freely. The mixing time of a Markov chain is the number of steps required for the chain to approach its stationary distribution. There...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کامل